Jutge.org

The Virtual Learning Environment for Computer Programming

Weighted shortest path (4)
P39586_en
Write a program that, given a directed graph with positive costs at the arcs, and two vertices x and y, computes the minimum cost to go from x to y, and the number of ways of going from x to y with such minimum cost.

Input

Input consists of several cases. Every case begins with the number of vertices n and the number of arcs m. Follow m triples u, v, c, indicating that there is an arc $u \rightarrow v$ of cost c, where $u \neq v$ and $1 \leq c \leq 1000$. Finally, we have x and y. Assume $1 \leq n \leq 10^{4}, 0 \leq m \leq 5 n$, and that for every pair of vertices u and v there is at most one arc of the kind $u \rightarrow v$. All numbers are integers. Vertices are numbered from 0 to $n-1$.

Output

For every case, print the minimum cost to go from x to y, and the number of different paths that achieve this cost. This number will never exceed 10^{9}. If there is no path from x to y, state so.

Sample input

```
10
```

06
515
43
18
020
55
21
110
12
34
5
1
11000
0
3
2100
140
260
2

Problem information

Author : Salvador Roura
Generation : 2013-09-02 15:48:47
© Jutge.org, 2006-2013.
http://www.jutge.org

Sample output

cost 16,1 way(s)
no path from 1 to 0
cost 100,2 way(s)

